Для gold скачать плагин nuclearmc ☢️ ядерные реакторы, радиация и оружие ☣️ [1.13-1.17] 🟡 1.6.5
Содержание:
- Optimal High Speed Turbines (1840 RPM)[edit]
- Construction[edit]
- Reactor Parts[]
- Крафт добавляемый плагином NuclearMC:
- Подробнее о предметах плагина NuclearMC:
- Turbine[edit]
- Note
- Note[edit]
- Ресурсы
- Reactor[edit]
- Reactor
- Usage
- Как все происходит на деле?
- BigReactors.cfg
- Optimal Ultra High Speed Endgame Designs[edit]
- Optimal Unattended Enderium Designs[edit]
- Pros and Cons
- Danger
- Building It[]
Optimal High Speed Turbines (1840 RPM)[edit]
- All optimal high speed turbines operate at 1840 RPM.
- Built with exactly 49 coil blocks. That’s 1 more than 6 complete rings.
- They use between 1800 and 2000 mB/t of steam.
- Longer turbines are marginally more efficient.
Enderium, Titanium, Platinum, Celengil, etc. are listed here for comparison. Although they operate at under 2000 RPM they behave like Ultra High Speed turbines. See above for the construction of their optimal designs.
Block | Coils | Steam | Energy | RF/t/coil |
---|---|---|---|---|
Enderium | 37 | 1,800 | 24,075 | 650 |
Titanium Titanium | 41 | 1,800 | 20,330 | 495 |
Celenegil Celenegil | 49 | 1,800 | 21,640 | 440 |
Platinum | 44 | 1,800 | 19,660 | 445 |
Shiny | 44 | 1,800 | 19,660 | 445 |
Tartarite Tartarite | 44 | 1,800 | 19,660 | 445 |
Haderoth Haderoth | 70 | 1,820 | 17,650 | 360 |
Electrum | 56 | 1,980 | 14,700 | 300 |
Quicksilver Quicksilver | 46 | 1,980 | 13,760 | 280 |
Orichalcum Orichalcum | 42 | 1,960 | 11,500 | 235 |
Gold | 44 | 1,960 | 10,290 | 210 |
Mithril Mithril | 35 | 1,940 | 9,700 | 200 |
Silver | 36 | 1,820 | 7,500 | 150 |
Invar | 32 | 1,930 | 6,800 | 125 |
Steel | 29 | 1,930 | 5,730 | 115 |
Aluminum | 29 | 1,930 | 5,730 | 115 |
Brass | 26 | 1,980 | 4,940 | 100 |
Osmium | 26 | 1,980 | 4,940 | 100 |
Copper | 26 | 1,980 | 4,240 | 85 |
Iron | 21 | 1,870 | 2,141 | 60 |
Construction[edit]
Time lapse assembly of a small Reactor Structure.
Reactors and turbines are multi-block structures made up of individual blocks arranged according to specific rules, which together create a large functional machine. Both reactors and turbines must be built as a closed, mostly hollow box with no holes and complete edges, including corners. The edges of this box can be, but not necessarily built from Reactor Casing or Turbine Housing blocks, and the faces of Reactor Glass or Turbine Glass blocks, respectively.
In addition to these containment blocks, a number of other blocks are necessary to make a functioning reactor or turbine. None of these blocks can be placed on the edge or corner; they must be somewhere in the faces of the reactor, sometimes in very specific places. Right clicking on the reactor casing or turbine housing will display a message of what is missing.
Important: Ensure that there aren’t any metallic blocks within a 1 block radius of the turbine! Doing so results in unpredictable behavior with the turbine.
Reactor Parts[]
Reactor Controller
All reactors must have exactly one Reactor Controller block. This block provides the main interface for monitoring the status of the reactor.
Reactor Access Port
Access Ports are buffers that contain unused fuel and waste. Right-clicking a port brings up an interface that allows to add fuel, remove waste, and toggle inlet/outlet mode. An active reactor will use the fuel from the ‘Inlet’ port and dump waste into the ‘Outlet’ port.
A Big Reactor needs at least one access port.
Yellorium Fuel Rod
The core of the reactor is an arrangement of Yellorium Fuel Rods. These must be stacked to stretch the entire interior height of the reactor. The entire volume of the reactor may be filled with fuel rods, but it does not have to be.
Reactor Control Rod
Above each stack of fuel rods there must be a Reactor Control Rod, this block tells the reactor where the fuel rods are so it can fill them with fuel.
Reactor Power Tap
Reactors that provide RF energy directly need to have at least one Reactor Power Tap as part of the structure.
The Power Tap can attach to any compatible Cable or Conduit that accepts RF power.
Reactor Coolant Port
Coolant Ports allow fluids to be injected into and drained from the reactor. Reactors that provide RF directly use coolant ports to keep the core at a safe operating temperature. Those that run steam turbines use coolant ports to feed the turbine with steam.
Reactor Computer Port
The Computer Port intalled on a Reactor, allows ComputerCraft blocks and items to control it.
Reactor RedNet Port
Like the Computer Port, the RedNet Port allows a reactor to interface with a RedNet network.
Крафт добавляемый плагином NuclearMC:
Атомная бомба
Железный блок, Ядро реактора, Железный блокЖелезный блок, Топливный стержень, Железный блокЖелезный блок, Фейерверк, Железный блок
Топливный стержень
Железный слиток, ОБОГАЩЕННЫЙ УРАН, Железный слитокЖелезный слиток, ОБОГАЩЕННЫЙ УРАН, Железный слитокЖелезный слиток, ОБОГАЩЕННЫЙ УРАН,Железный слиток
Водородная бомба
Железный блок, Ядро реактора, Железный блокЖелезный блок, Звезда незера, Железный блокЖелезный блок, Фейерверк, Железный блок
Ядро реактора
Железный блок, Редстоун, Железный блокРедстоун, Алмазный блок, РедстоунЖелезный блок, Редстоун, Железный блокУрановая рудаПолучено в результате полезных ископаемых
Подробнее о предметах плагина NuclearMC:
Уран
• Урановая руда может быть получена путем добычи. Различные руды / блоки имеют настраиваемую вероятность выпадения урановой руды при добыче.
• Урановая руда бесполезна до тех пор, пока ее не обогатят путем плавки. Обогащенный уран используется для изготовления топливных стержней для реакторов и ядерного оружия.
Ядерные реакторы
• Чтобы создать ядерный реактор, вам необходимо разместить 1 активную зону реактора, 3 котла, 1 бункер и 1 печь в конфигурации, показанной ниже (примечание: печь должна быть размещена последней):
• Чтобы использовать ядерный реактор, просто поместите топливные стержни в бункер. По умолчанию 1 топливный стержень будет питать печь столько же времени, сколько ведро лавы (1000 секунд).
• Радиоактивные ядерные отходы будут образовываться во время работы реактора и будут помещены в бункер или сброшены на землю, если бункер заполнен.
Ядерные отходы будут излучать игроков, если они будут держать их в своем инвентаре или стоять рядом с ними, когда они лежат на земле. Носите защитное снаряжение, чтобы уменьшить его эффект!
• Пока реактор работает, он израсходует воду в котлах. По умолчанию каждые 30 секунд используется 1 уровень воды в котле.Если в реакторе закончится вода, он расплавится (взрыв + радиация в окрестностях)
Ядерное оружие
• Есть два вида ядерного оружия: атомная бомба и водородная бомба.
• Оба оружия вызывают сильный взрыв при ударе и излучают окружающее пространство, но водородная бомба более мощная.
• Чтобы запустить ядерное оружие, щелкните предмет, глядя в том направлении, в котором вы хотите запустить ракету, и она взорвется при ударе.
Радиация
• Уровень радиации игроков отображается на панели босса, как показано ниже (панель босса исчезнет, когда их уровень излучения будет равен 0).
• Источники излучения включают: хранение ядерных отходов, стояние рядом с ядерными отходами, аварии реакторов, ядерное оружие и регионы Worldguard с флагом рад в секунду.
• Эффекты излучения настраиваются, но по умолчанию эффекты следующие: слабость, начинающаяся с 25 рад, тошнота с 50 рад, увядание с 75 рад и вред со 100 рад.• Уровень радиации игроков будет медленно снижаться с течением времени, или они могут использовать таблетки радиации, чтобы значительно снизить уровень радиации.
• Количество радиации, получаемой игроком от источника радиации, можно уменьшить, надев защитную экипировку. Для каждого элемента защитного снаряжения, который носит игрок, количество получаемых рад уменьшается на 25%, поэтому, если игрок носит полный защитный костюм, он полностью защищен от любого излучения. По умолчанию,Рецепты изготовления хазматов такие же, как и у обычных доспехов, но материал — губка.
Turbine[edit]
A Turbine produces energy from Steam generated by an active cooling Reactor or generated using one of 6 other mods methods. Steam is converted back into water, which may be recycled into a Reactor to produce more steam.
Turbine Coil Materialedit
The three values are always averaged together to give the resulting values for the entire turbine coil. A higher efficiency will always produce more power. A higher drag will produce more power, but will slow down the rotor more when induction is enabled. A higher bonus will also always produce more power.
Block | Efficiency | Drag | Bonus |
---|---|---|---|
Iron | 0.33 | 0.1 | 1 |
Copper | 0.396 | 0.12 | 1 |
Osmium | 0.462 | 0.12 | 1 |
Brass | 0.462 | 0.12 | 1 |
Aluminum | 0.495 | 0.13 | 1 |
Steel | 0.495 | 0.13 | 1 |
Invar | 0.495 | 0.14 | 1 |
Silver | 0.561 | 0.15 | 1 |
Gold | 0.66 | 0.175 | 1 |
Electrum | 0.825 | 0.2 | 1 |
Fluxed Electrum Fluxed Electrum | 0.825 | 0.22 | 1.01 |
Platinum | 0.99 | 0.25 | 1 |
Shiny Shiny | 0.99 | 0.25 | 1 |
Titanium | 1.023 | 0.27 | 1 |
Enderium Enderium | 0.99 | 0.3 | 1.02 |
Ludicrite Ludicrite | 1.155 | 0.35 | 1.02 |
Mithril | 0.726 | 0.15 | 1 |
Orichalcum Orichalcum | 0.759 | 0.17 | 1 |
Quicksilver | 0.858 | 0.18 | 1 |
Haderoth Haderoth | 0.99 | 0.2 | 1 |
Celenegil Celenegil | 1.089 | 0.225 | 1 |
Tartarite Tartarite | 0.99 | 0.25 | 1 |
Turbine Optimizationedit
- Turbines convert steam into water at an even ratio, and produce a certain amount of RF per tick depending on the coil material and turbine design.
- Steam intake is always between 0 and 2,000 mB per tick.
- The rotor speed gauge only shows between 0 and 2,200 RPM, but the actual rotor speed can be higher.
- Generated energy is always positive or 0.
- The width of the turbine frame is not a factor of energy output.
- The number of rotor shafts isn’t a very large factor of energy output. Dimensions used are at the Player’s discretion.
- If maximum rotor speed is unlimited and 2,000 mB per tick of steam is available, it is most efficient to use 80 rotor blades. If the rotor speed is limited to 2,000 RPM, perhaps more rotor shafts and fewer rotor blades would be preferable in order to keep the rotor speed above 1,796.27 but below 2,000 RPM while optimizing energy output.
- All blocks of the coil do not need to be made of the same material, but are averaged together to determine the turbine’s score in each of the three coil traits. This makes it possible to make composite coils that use cheap filler metals in balance with high end metals to maximize limited resources. It also means, however, that adding a ring of a low performing metal to a turbine with several rings of a high-perfomance metal may actually reduce the output.
Turbine Equationedit
- BladeSurfaceArea = Number of rotor blades in the turbine.
- RotorMass = Total combined mass of the rotor blades and rotor shafts. See the table above for the mass of each block.
- CoilSize = The number of coil blocks in the turbine.
- InductorEfficiency, InductorDrag, InductorBonus = The average Efficiency, Drag, and Bonus of each coil block (from the table above).
- RotorSpeed = The speed of the rotor as displayed in the turbine controller GUI.
The turbine is at maximum efficiency (100%) at 898.134 RPM and 1796.27 RPM. It has an efficiency of 50% when less than 500 RPM, and at 1347.2 RPM. This doesn’t mean, however, that a turbine is most energy efficient at 1796 RPM.
Rotor energy in terms of ticks elapsed:
Where C is a constant that must be calculated based on initial values. If the turbine is just being started, then C is zero. OR, in terms of the RotorEnergy of the previous tick:
Rotor energy when turbine is running continuously:
a and b are both constant and are only dependent on the design of the turbine and the control values in the turbine controller.
If the turbine inductor is disengaged then InductionTorque equals zero.
Note
- It is important to note that the coolant discussed in this section is completely unrelated to the Reactor Coolant Port. These would be more accurately described as the moderating material of the reactor, whereas the coolant port accepts only water for the generation of steam.
- Fantasy Metals: Mithril, Orichalcum, Quicksilver, Haderoth, Celenegil, Tartarite and Manyullyn may also be used as coolant material.
- ↑ Some of the materials above don’t work in the Big Reactor on MC 1.6.4
- As of v0.3.4A2, any material will have a mass of 10 units per block. In the future the mod developer plans to allow the rotor to be constructed out of different materials.
- ↑ These six materials only work if the use of fantasy metals is enabled in the Big Reactor config file.
Note[edit]
- It is important to note that the coolant discussed in this section is completely unrelated to the Reactor Coolant Port. These would be more accurately described as the moderating material of the reactor, whereas the coolant port accepts only water for the generation of steam.
- Fantasy Metals: Mithril, Orichalcum, Quicksilver, Haderoth, Celenegil, Tartarite and Manyullyn may also be used as coolant material.
- ↑ Some of the materials above don’t work in the Big Reactor on MC 1.6.4
- As of v0.3.4A2, any material will have a mass of 10 units per block. In the future the mod developer plans to allow the rotor to be constructed out of different materials.
- ↑ These six materials only work if the use of fantasy metals is enabled in the Big Reactor config file.
Ресурсы
Yellorite Ore – руда, добавленная в генерацию мира. Основной ресурс, с которого можно получить топливо для реактора. | |
Yellorium Ingot – крафтится путем переплавки Yellorite Ore или Yellorite Dust в печи. Используются как основной вид топлива для реактора: производит энергию, тепло и Cyanite Ingot (отходы). Если установлен IC2, вместо Yellorium игрок получит сразу обогащенный уран*. | |
Cyanite Ingot – отработанный ресурс в реакторе. Получается путем отработки Yellorium или Blutonium в реакторе. | |
Blutonium Ingot – переработанный Cyanite Ingot в блоке Cyanite Reprocessor. Используется как топливо для реактора: вырабатывает энергию, тепло и снова Cyanite Ingot. По-сути, не имеет отличий с Yellorium Ingot в плане производства энергии и тепла. | |
Graphite Bar – материал, используемый для цепочек крафта множества блоков реактора. Можно получить путем обжигания угля или древесного угля в печи. |
Reactor[edit]
Partsedit
Reactor Controller
All reactors must have exactly one Reactor Controller block, which provides the main interface for monitoring the status of the reactor.
Access Ports are buffers that contain unused fuel and waste. Right-clicking a port brings up an interface that allows to add fuel, remove waste, and toggle inlet/outlet mode. An active reactor will use the fuel from the ‘Inlet’ port and dump waste into the ‘Outlet’ port. A Big Reactor needs at least one access port.
The core of the reactor is an arrangement of Yellorium Fuel Rods. These must be stacked to stretch the entire interior height of the reactor. The entire volume of the reactor may be filled with fuel rods, but it does not have to be. The Reactor will usually be more efficient with the Fuel Rods placed diagonally in a checker board pattern with a coolant filling the gaps.
Above each stack of Fuel Rods there must be a Reactor Control Rod, which allows the Player to adjust the depth of the Rod. It also tells the reactor where the fuel rods are so it can fill them with fuel.
Reactors that provide RF energy directly need to have at least one Reactor Power Tap as part of the structure.
The Power Tap can attach to any compatible Cable or Conduit that accepts RF power.
Coolant Ports allow fluids to be injected into and steam drained from the reactor to be transported to feed a turbine.
Reactor Computer Port
The Computer Port installed on a Reactor, allows ComputerCraft and OpenComputers blocks and items to control it.
Reactor RedNet Port
Like the Computer Port, the RedNet Port allows a reactor to interface with a RedNet network.
Reactor Temperatureedit
The fuel inside the fuel rods generates power, radiation and heat. Heat is transferred to the adjacent 4 blocks from the fuel rods into a coolant or fuel rod block, and likewise radiation is transferred up to 4 blocks (dependant on adjacent block absorption) in the cardinal directions (North,South,East,West).
Excess radiation and heat could cause the temperature in the reactor to rise above efficient levels and consume more fuel, since there is a penalty to fuel consumption at too high an operating temperature.
Temperature (C) | < 200 | 200 to 1000 | 1000 to 2000 |
---|---|---|---|
Loss (%) | None | 0 to 10 | 10 to 66 |
Reactor Coolantedit
A coolant reduces the temperature of a reactor, and moves heat from the reactor core to the reactor casing. The higher the casing heat, the higher the energy output and heat transfer rate of coolants .
Any fluid used as coolant must be manually added to the reactor during construction, exactly as you would with solid coolant materials. Those looking to fill large reactors with fluids that fall, such as Gelid Cryotheum, may want to consider using a Flood Gate of Fluid Outlet.
Each coolant material has various parameters that govern how it affects the reactor :
- Absorption: How much radiation this material absorbs to convert to heat. Ranges from 0 (none) to 1 (all).
- Heat Efficiency: How efficiently absorbed radiation is converted to heat. Ranges from 0 (none) to 1 (all).
- Moderation: How well this material moderates radiation. This is a divisor, and greater than or equal to 1.
- Conductivity: Amount of heat transfered on each exposed face.
Block | Absorption | Heat Efficiency | Moderation | Conductivity |
---|---|---|---|---|
Iron | 0.5 | 0.75 | 1.4 | 0.6 |
Gold | 0.52 | 0.8 | 1.45 | 2 |
Diamond | 0.55 | 0.85 | 1.5 | 3 |
Emerald | 0.55 | 0.85 | 1.5 | 2.5 |
Graphite | 0.1 | 0.5 | 2 | 2 |
Glass | 0.2 | 0.25 | 1.1 | 0.3 |
Ice | 0.33 | 0.33 | 1.15 | 0.1 |
Snow | 0.15 | 0.33 | 1.05 | 0.05 |
Copper | 0.5 | 0.75 | 1.4 | 1 |
Osmium | 0.51 | 0.77 | 1.41 | 1 |
Brass | 0.51 | 0.77 | 1.41 | 1 |
Bronze | 0.51 | 0.77 | 1.41 | 1 |
Zinc | 0.51 | 0.77 | 1.41 | 1 |
Aluminum | 0.5 | 0.78 | 1.42 | 0.6 |
Steel | 0.5 | 0.78 | 1.42 | 0.6 |
Invar | 0.5 | 0.79 | 1.43 | 0.6 |
Silver | 0.51 | 0.79 | 1.43 | 1.5 |
Lead | 0.75 | 0.75 | 1.75 | 1.5 |
Electrum | 0.53 | 0.82 | 1.47 | 2.2 |
Fluxed Electrum | 0.54 | 0.83 | 1.48 | 2.4 |
Platinum | 0.53 | 0.86 | 1.58 | 2.5 |
Shiny | 0.53 | 0.86 | 1.58 | 2.5 |
Titanium Titanium | 0.53 | 0.87 | 1.59 | 2.7 |
Enderium | 0.53 | 0.88 | 1.6 | 3 |
Water | 0.33 | 0.5 | 1.33 | 0.1 |
Destabilized Redstone | 0.75 | 0.55 | 1.6 | 2.5 |
Energized Glowstone | 0.2 | 0.6 | 1.75 | 1 |
Gelid Cryotheum | 0.66 | 0.95 | 6.0 | 3 |
Resonant Ender | 0.9 | 0.75 | 2.0 | 2 |
Blazing Pyrotheum | 0.66 | 0.9 | 1.0 | 0.6 |
Life Essence | 0.7 | 0.55 | 1.75 | 2 |
Reactor
Parts
Reactor Controller64px
All reactors must have exactly one Reactor Controller block, which provides the main interface for monitoring the status of the reactor.
Reactor Access Port
64px
Access Ports are buffers that contain unused fuel and waste. Right-clicking a port brings up an interface that allows to add fuel, remove waste, and toggle inlet/outlet mode. An active reactor will use the fuel from the ‘Inlet’ port and dump waste into the ‘Outlet’ port. A Big Reactor needs at least one access port.
Yellorium Fuel Rod
64px
The core of the reactor is an arrangement of Yellorium Fuel Rods. These must be stacked to stretch the entire interior height of the reactor. The entire volume of the reactor may be filled with fuel rods, but it does not have to be. The Reactor will be most efficient with the Fuel Rods placed diagonally in a checker board pattern with a coolant filling the gaps.
Reactor Control Rod
64px
Above each stack of Fuel Rods there must be a Reactor Control Rod, which allows the Player to adjust the depth of the Rod. It also tells the reactor where the fuel rods are so it can fill them with fuel.
Reactor Power Tap
64px
Reactors that provide RF energy directly need to have at least one Reactor Power Tap as part of the structure.
The Power Tap can attach to any compatible Cable or Conduit that accepts RF power.
Reactor Coolant Port
64px
Coolant Ports allow fluids to be injected into and steam drained from the reactor to be transported to feed a turbine.
Reactor Computer Port64px
The Computer Port installed on a Reactor, allows ComputerCraft and OpenComputers blocks and items to control it.
Reactor RedNet Port64px
Like the Computer Port, the RedNet Port allows a reactor to interface with a RedNet network.
Reactor Temperature
The fuel inside the fuel rods generates power, radiation and heat. Heat is transferred to the adjacent 4 blocks from the fuel rods into a coolant or fuel rod block, and likewise radiation is transferred up to 4 blocks (dependant on adjacent block absorption) in the cardinal directions (North,South,East,West).
Excess radiation and heat could cause the temperature in the reactor to rise above efficient levels and consume more fuel, since there is a penalty to fuel consumption at too high an operating temperature.
Temperature (C) | < 200 | 200 to 1000 | 1000 to 2000 |
---|---|---|---|
Loss (%) | None | 0 to 10 | 10 to 66 |
Reactor Coolant
A coolant reduces the temperature of a reactor, and moves heat from the reactor core to the reactor casing. The higher the casing heat, the higher the energy output and heat transfer rate of coolants .
Any fluid used as coolant must be manually added to the reactor during construction, exactly as you would with solid coolant materials. Those looking to fill large reactors with fluids that fall, such as Gelid Cryotheum, may want to consider using a Flood Gate.
Each coolant material has various parameters that govern how it affects the reactor :
Absorption: How much radiation this material absorbs and converts to heat. Ranges from 0 (none) to 1 (all).
Heat Efficiency: How efficiently radiation is converted to heat. Ranges from 0 (none) to 1 (all).
Moderation: How well this material moderates radiation. This is a divisor, and greater than or equal to 1.
Conductivity: Amount of heat transfered on each exposed face.
Block | Absorption | Heat Efficiency | Moderation | Conductivity |
---|---|---|---|---|
Iron Iron | 0.5 | 0.75 | 1.4 | 0.6 |
Gold Gold | 0.52 | 0.8 | 1.45 | 2 |
Diamond Diamond | 0.55 | 0.85 | 1.5 | 3 |
Emerald Emerald | 0.55 | 0.85 | 1.5 | 2.5 |
Graphite Graphite | 0.1 | 0.5 | 2 | 2 |
Glass Glass | 0.2 | 0.25 | 1.1 | 0.3 |
Ice Ice | 0.33 | 0.33 | 1.15 | 0.1 |
Snow Snow | 0.15 | 0.33 | 1.05 | 0.05 |
Copper Copper | 0.5 | 0.75 | 1.4 | 1 |
Osmium Osmium | 0.51 | 0.77 | 1.41 | 1 |
Brass Brass | 0.51 | 0.77 | 1.41 | 1 |
Bronze Bronze | 0.51 | 0.77 | 1.41 | 1 |
Zinc Zinc | 0.51 | 0.77 | 1.41 | 1 |
Aluminum Aluminum | 0.5 | 0.78 | 1.42 | 0.6 |
Steel Steel | 0.5 | 0.78 | 1.42 | 0.6 |
Invar Invar | 0.5 | 0.79 | 1.43 | 0.6 |
Silver Silver | 0.51 | 0.79 | 1.43 | 1.5 |
Lead Lead | 0.75 | 0.75 | 1.75 | 1.5 |
Electrum Electrum | 0.53 | 0.82 | 1.47 | 2.2 |
Fluxed Electrum Fluxed Electrum | 0.54 | 0.83 | 1.48 | 2.4 |
Platinum Platinum | 0.53 | 0.86 | 1.58 | 2.5 |
Shiny Shiny | 0.53 | 0.86 | 1.58 | 2.5 |
Titanium Titanium | 0.53 | 0.87 | 1.59 | 2.7 |
Enderium Enderium | 0.53 | 0.88 | 1.6 | 3 |
Water Water | 0.33 | 0.5 | 1.33 | 0.1 |
Destabilized Redstone Destabilized Redstone | 0.75 | 0.55 | 1.6 | 2.5 |
Energized Glowstone Energized Glowstone | 0.2 | 0.6 | 1.75 | 1 |
Gelid Cryotheum Gelid Cryotheum | 0.66 | 0.95 | 6.0 | 3 |
Resonant Ender Resonant Ender | 0.9 | 0.75 | 2.0 | 2 |
Blazing Pyrotheum Blazing Pyrotheum | 0.66 | 0.9 | 1.0 | 0.6 |
Life Essence Life Essence | 0.7 | 0.55 | 1.75 | 2 |
Usage
Nuclear Reactor GUI.
Fill it with Coolant and Water, then put any Fuel Rods of your choosing into it and press the red button to raise the rods.
Clicking on the E-shaped button next to the heat and steam gauges will switch the steam’s compression.
It won’t generate power on its own, but instead, produce Steam that can be pumped into Steam Turbines that do.
To completely fill it with quad rods, you’d need 32 nuclear fuel ingots.
Demonstration of rods placed next to each other.
Alternatively you can put niter blocks right next to the reactor to generate coolant passively.
You can significantly increase the amount of heat a rod produces by placing them next to each other.
You can show the grid in the GUI by pressing ALT.
Как все происходит на деле?
Размер рамки реактора составляет от 3х3х3 до 32х32х48 (согласно файлу конфигурации). От размера реактора напрямую зависит его мощность. Но для чего строить огромную махину, если энергию потом будет некуда девать? Начнем с маленького 3х3х3.
Нижний слой выкладываем из обшивки. В центре можно воткнуть стеклянный блок, если угодно.
Средний слой состоит из главного контроллера, порта IN-OUT, «крана», стеклянного блока обшивки. В центре стоит прозрачный топливный стержень. Также, мы помним, что ребра должны состоять только из обшивки.
Последний слой полностью из обшивки, в центре стоит Reactor Control Rod прямо над топливным стержнем. Если конструкция собрана правильно – мы визуально это заметим, как на рисунке.
Какова будет мощность реактора? Один топливный стержень способен максимально вырабатывать ~4MJ\t. Если построить реактор 3х3х12, то стержней будет 10 (12 общая высота и минус 2 блока: низ обшивки и верх Control Rod) эквивалентом ~40MJ\t. Круто? Еще бы! Теоретически, при максимальном размере реактора производится энергия 165 600 MJ\t! *GregTech курит в сторонке*
Выводить энергию лучше всего с помощью труб из Thermal Expansion, особенно, если мощности нужны очень высокие. Если использовать трубы из BuildCraft, то сперва придется подключать деревянную электрическую, как и к любому двигателю, максимальная пропускная способность которой равна 32MJ\t.
Взрывается ли реактор, если накопит максимальное количество энергии и которую некому будет отдавать? Лично мне пока не удалось разогреть его до таких критических температур. Отмечу только, что в конце реактор сбавляет мощность, но продолжает работать. Автоматических систем его отключения, к сожалению, пока не предусмотрено. Гейты BuildCraft никак не реагируют на Big Reactors, кроме IN-OUT портов.
BigReactors.cfg
GenerateYelloriteOre=true – включить генерацию Yellorite в мире. Рекомендуется отключить, если в клиенте установлен IC2 во избежание дисбаланса в игре, т.к. при обжигании руды игрок сразу получит обогащенный уран. Автозамена Yellorite Ingot на слитки урана отключается параметром autoAddUranium=false, но большой разницы я не вижу: фактически, будет один вид «халявного» топлива, и один не очень… Для «честной» игры с IC2 лучше руду не включать и использовать уран.
Запасы Yellorium Ore в мире так же настраиваются: количество кластеров, их размер, амплитуда высот.
enableWorldGen=true — генерация руды Yellorite включена для всех биомов, кроме Нижнего мира и Края.
enableWorldRegeneration=false – генерация руды в уже созданном чанке. По-умолчанию отключена.
Для тех, кому кажется, что количество вырабатываемой энергии в аддоне слишком завышено, существует коэффициент в параметре powerProductionMultiplier – множитель мощности реакторов. Другой вариант — указать максимальные размеры каркаса: maxReactorHeight (высота) и maxReactorSize (длина и ширина), тем самым ограничив энергетические мощности машин.
Аддон появился совсем недавно, еще даже не вышел со стадии альфа-тестирования, тем не менее, он заслуживает внимания. Это то, чего так долго не хватало BuildCraft’у! Возможно, Big Reactors еще пока не сбалансирован, забагован и сырой, но в будущем автор обещает его намного усложнить и разнообразить.
На этом все. С вами был therapy session, wiki, google-translate, paint.net, ms word, немного энтузиазма и замечательное творение от Erogenous Beef — Big Reactors. Удачи в начинаниях и развитии!
Optimal Ultra High Speed Endgame Designs[edit]
Optimal Ultra High Speed endgame turbines consists of Enderium, platinum or sometimes ludicrite blocks to get a high efficiency, but keep the amount of these materials low for save on materials and consequently increasing the turbine’s operation speed. Always leave 1 meter of space between the lowest Turbine Rotor Blade and the highest coil, this will reduce drag on the rotor and give you maximum efficiency. Do note that these turbines start up slower the higher designed speed it has, so build turbine that runs on less than 3,600 RPM if one wants quick power. Also the mod author will make the turbine explode above 2,000 RPM in a future update, when the update occurs all the turbines already operating above that speed will be deactivated and their speed reset to 0. Don’t be foolish and start them up again!
As a reference, the 1,800 RPM optimal end game turbine design consists of 37 Enderium blocks and generate 24,077 RF/t at 2,000 steam mB/t. All turbines below contain 80 turbine rotor blades, as their steam intake is 2,000 mB/t. A good 2,700 RPM design consists of 25 Enderium blocks and 2 platinum blocks. It should generate about the same amount of power as turbines of 1,800 RPM designs mentioned above, due to platinum and Enderium blocks having the same efficiency. A 3,600 RPM design includes 16 Enderium blocks and 3 platinum blocks. It should also generate about the same amount of power as the 1,800 RPM optimal turbines. Materials used to build higher speed turbines can be easily calculated. A platinum block should count as 5/6 Enderium blocks in the calculation. If you want to build a 9,000 RPM turbine, for example, it is 5×1,800 RPM so the turbine should have 37/5 Enderium blocks which approximate to 7 blocks (Always round down: If you round down and the turbine is spinning faster than expected, lower steam intake a little). Therefore, 4 Enderium blocks and 4 platinum blocks should be used in the turbine.
Ludicrite block turbines are ludicrous. By using only 4 blocks of Ludicrite as the coil material and using a minimum of 76 blades, setting the fluid intake to 1918 mB/t will make the turbine reach 13,478.1 RPM and generate 26,531 RF/t. It is even better than a optimal 1,800 RPM design and is much cheaper.
Optimal Unattended Enderium Designs[edit]
Note: This guide was written before Ludicrite was added to the game. Ludicrite is now the best material.
For instance, a turbine spinning at a suboptimal 1781 RPM (using 32 blocks of Ludicrite) generates 28050 RF.
All optimal end game designs use 37 Enderium coil blocks (3 blocks short of 5 full rings) with a supply of 2,000mB/t of steam.
Note: only includes designs with a constant rotor speed.
Dimensions include turbine housing blocks. Height is the axis with the rotor shaft. Amount of Cyanite does not include that needed by fluid ports, controllers, power ports, etc. because that amount is independent of turbine dimensions.
Width | Height | Cyanite | Total Vol. | Empty Vol. | RPM | RF/t | RF/t/m³ | RF/t/cyan | Comment |
---|---|---|---|---|---|---|---|---|---|
5 | 27 | 547 | 675 | 83 | 1,797.4 | 24,077 | 35.67 | 44 | Highest energy per cubic metre. |
7 | 17 | 529 | 833 | 243 | 1,797.4 | 24,077 | 28.9 | 45.5 | Highest energy per cyanite ingot. |
13 | 11 | 739 | 1,859 | 963 | 1,797.4 | 24,077 | 12.95 | 32.5 | Highest energy per height. |
The first example above with the highest energy per cubic metre needs:
— 80 Turbine Rotor Blades
— 25 Turbine Rotor Shafts
— 37 Enderium Blocks
— 132 Turbine Housing
~ 312 Turbine Glass
— 1 each: Turbine Power Port, Turbine Controller, Turbine Rotor Bearing
— at least 2 Turbine Fluid Ports (1 input and 1 output)
(edit: properly adjusted requirements)
Using the most space efficient design, each turbine block consumes ~3 mB of steam and produces 35.67 RF per tick = ~12 RF/t/mB/m³. Mekanism 9 (available for Minecraft 1.7.10+) now produces even more power, and for a cheaper, faster, and smaller setup.
Pros and Cons
+ Starter for nuclear power.
+ Can take any type of fuel rod.
+ Can make infinite coolant.
+ Can take in infinite water just by having water blocks next to it.
! Niter blocks will supply the reactor with infinite coolant, but you cannot have concrete bricks blocking radiation.
— Produces radiation when active, levels varying depending on the type of fuel rods inside, requires concrete brick covering to prevent radiation from coming out.
— Will violently explode when experiencing a meltdown.
— Does not directly produce electricity.
— Spent rods have to manually be removed and the other rods have to be rearranged.
Danger
Make sure the reactor has a steady supply of coolant when active and water at the ready, otherwise it will overheat and violently explode in the meltdown. Coolant consumption depends on the strength of the fuel. The water cooled down by steam turbines may be pumped back inside, but it will eventually run out due to the reactor not converting at 100% efficiency. Using a remote reactor block and setting automatic shutdown to on will prevent meltdowns.
If the reactor runs out of Coolant, its core temperature will rise until it reaches its maximum capacity and melts down.
If the reactor runs out of water, its hull temperature will rise until it reaches its maximum capacity and subsequently causes the core to increase in temperature, making coolant ineffective, as it can no longer move heat to the hull. It will also meltdown if its core reaches its maximum temperature capacity.
Either of those scenarios can be caused by external modifier blocks, such as ones that have heat modifiers and the reactor itself is running high strength fuels also, such as Plutonium.
Building It[]
Reactors and turbines are multi-block structures: they are made up of individual blocks arranged according to specific rules which together create a large functional machine. Both reactors and turbines must be built as a closed, mostly hollow box with no holes and complete edges, including corners. The edges of this box must be Reactor Casing or Turbine Housing, and the faces Reactor Glass or Turbine Glass, respectively.
In addition to these containment blocks, a number of other blocks are necessary to make a functioning reactor or turbine. None of the these blocks can be placed on the edge or corner; they must be somewhere in the faces of the reactor, sometimes in very specific places. Right clicking on the reactor casing or turbine housing will tell you if anything is missing.
Important: Ensure there are no metallic blocks within a 1 block radius of your turbine! Doing so results in unpredictable behavior with the turbine.
Download this spreadsheet to calculate the required materials and their cost for any size Reactor structure.
Use this Big Reactor Simulator to test the efficiency of different Reactor design.