Big reactors/реакторный контроллер
Содержание:
- Гайд Big Reactors
- Known Issues
- Ресурсы
- Optimal Ultra High Speed Turbines (> 2,000 RPM)[edit]
- Reactor Parts[]
- Optimal Unattended Enderium Designs[edit]
- Turbine
- User Interface/Graphics
- Construction[edit]
- BigReactors.cfg
- Как все происходит на деле?
- Building It[]
- GUI[edit]
- Note[edit]
- TODO — 0.5: The Exotic Coolant Update
- Construction
- Turbine[edit]
- Turbine[edit]
- Note[edit]
Гайд Big Reactors
Гайд по моду Big Reactors
Гайд по моду Big Reactors
Описание мода:Мод предназначен для выработки энергии в огромных количествах,реактор вы робатывает RF энергию.
Все реакторы строятся много-блочной структурой, минимальный размер ректора может быть 3х3х3, максимальных размеров(настраеватся в конфигах), его можно сделать просто невероятно огромным, все зависит от ваших ресурсов и вкусов!
Приступим к крафту блоков и постройке реактора!
Постройка реактора и описания блоков!
Для этого мода вам понадобятся такие ресурсы как:
Добывается с Йеллориумовой руды
А если вы играете на серверах Sky Block то этот слиток можно добыть с помощью просеивания песка
Добывается путем обжарки угля в любой печи(я покажу на примере Красной печи из Термала)
(Другие ресурсы и блоки во 3-ой части, на данном этапе они вам не нужны)
Реакторы пассивного охлаждения!
Для начало вам понадобится не мало таких блоков как: Корпус реактора
Блок управления реактором
Топливный стержень (количество данного блока зависит от высоты реактора)
Стекло реактора (по жиланию)
Розетка реактора( для вывода энергии)
(можно поставить несколько, если ваш реактор больше чем 3х3х3)
Приступим к постройке реактора!
Как я и говорил в начале что реактор может быть самый малый 3х3х3, Будем рассматривать его!
Для начала строим площадку (дно реактора) 3х3 из корпусов реактора.
Далее ставим ребра в этой много-блочной форме
блок управления ставим в любую боковую часть, допустим вот так
далее нам понадобятся порты,поставим их с 2-ух сторон желтый режим Вход, синий режим выход они нужны для ввода топлива, и вывода побочной продукции в виде слитка цианита О нем позже расскажу!
Так мы поставили блок управления и 2 порта, что же еще нам нужно? А нам нужен Топливный стержень ставим его как показано тут он должен идти от самого дна реактора, выше топливного стержня ставим Блок управления стержнями
Ну и остался 1 блок у нас не закрытый, он нам нужен для розетки Когда вы все данные блоки поставите то ваш мини реактор примет нормальную форму
Интерфейс Блоков, их описание!
Начнем с главного блока, Блок управления
1. Кнопка для автоматического вынимания цианита из порта вывода с включенным синим выводом
2. Кнопка для отключения Автоматического вывода цианита
3. Кнопка отключения работы реактора
4. Буфер топливного стержня, показывает на сколько заполнен стержень топливом, сколько максимум он может в себя загрузить данного топлива, 1 слиток=1000mB, так же показывает процент выработки цианита
Источник
Known Issues
-
WR-CBE receivers do not activate redstone ports in input mode correctly if they are placed directly next to the input port. Workaround: Place one tile’s worth of redstone (or another mod’s redstone wire) between the receiver and the input port.
-
Setting the dormantChunkCacheSize Forge setting to something other than 0 (which is the default) will cause Big Reactors to break in strange and unusual ways. This setting is not supported.
-
Turbines do not properly (visually) assemble and have spotty UI updates if mod blocks are used as coils. This can be worked around prior to rc9 by using vanilla blocks, and after rc9 by using vanilla blocks or ludicrite blocks. This is due to a bug in CoFHCore and will be fixed in CoFHCore 3.0.0B7 (or newer).
Ресурсы
Yellorite Ore – руда, добавленная в генерацию мира. Основной ресурс, с которого можно получить топливо для реактора. | |
Yellorium Ingot – крафтится путем переплавки Yellorite Ore или Yellorite Dust в печи. Используются как основной вид топлива для реактора: производит энергию, тепло и Cyanite Ingot (отходы). Если установлен IC2, вместо Yellorium игрок получит сразу обогащенный уран*. | |
Cyanite Ingot – отработанный ресурс в реакторе. Получается путем отработки Yellorium или Blutonium в реакторе. | |
Blutonium Ingot – переработанный Cyanite Ingot в блоке Cyanite Reprocessor. Используется как топливо для реактора: вырабатывает энергию, тепло и снова Cyanite Ingot. По-сути, не имеет отличий с Yellorium Ingot в плане производства энергии и тепла. | |
Graphite Bar – материал, используемый для цепочек крафта множества блоков реактора. Можно получить путем обжигания угля или древесного угля в печи. |
Optimal Ultra High Speed Turbines (> 2,000 RPM)[edit]
- Usually operate above 2000 RPM, except for the highest tier materials.
- Built with exactly 80 rotor blades.
- They use the maximum of 2000 mB/t of steam.
Block | Coils | Speed | Energy | RF/t/coil |
---|---|---|---|---|
Ludicrite | 32 | 1,782.4 | 28,073 | 877 |
Enderium | 37 | 1,798.4 | 24,090 | 651 |
Orichalcum Orichalcum | 26 | 4,500 | 15,090 | 580 |
Haderoth Haderoth | 37 | 2,690 | 17,650 | 530 |
Titanium Titanium | 41 | 1,803.3 | 20,415 | 497 |
Celenegil Celenegil | 49 | 1,800 | 21,640 | 440 |
Platinum | 44 | 1,814.7 | 19,721 | 448 |
Shiny | 44 | 1,814.7 | 19,721 | 448 |
Tartarite Tartarite | 44 | 1,800 | 19,660 | 445 |
Electrum | 37 | 2,690 | 16,370 | 440 |
Quicksilver Quicksilver | 41 | 2,690 | 17,040 | 415 |
Gold | 42 | 2,700 | 13,100 | 310 |
Mithril Mithril | 49 | 2,700 | 14,400 | 295 |
Steel | 34 | 4,485 | 9,810 | 290 |
Aluminum | 34 | 4,485 | 9,810 | 290 |
Invar | 39 | 3,620 | 9,740 | 250 |
Silver | 49 | 2,700 | 11,140 | 225 |
Brass | 46 | 3,590 | 9,170 | 200 |
Osmium | 46 | 3,590 | 9,170 | 200 |
Copper | 46 | 3,590 | 7,860 | 170 |
Iron | 44 | 4,500 | 6,530 | 150 |
Reactor Parts[]
Reactor Controller
All reactors must have exactly one Reactor Controller block. This block provides the main interface for monitoring the status of the reactor.
Reactor Access Port
Access Ports are buffers that contain unused fuel and waste. Right-clicking a port brings up an interface that allows to add fuel, remove waste, and toggle inlet/outlet mode. An active reactor will use the fuel from the ‘Inlet’ port and dump waste into the ‘Outlet’ port.
A Big Reactor needs at least one access port.
Yellorium Fuel Rod
The core of the reactor is an arrangement of Yellorium Fuel Rods. These must be stacked to stretch the entire interior height of the reactor. The entire volume of the reactor may be filled with fuel rods, but it does not have to be.
Reactor Control Rod
Above each stack of fuel rods there must be a Reactor Control Rod, this block tells the reactor where the fuel rods are so it can fill them with fuel.
Reactor Power Tap
Reactors that provide RF energy directly need to have at least one Reactor Power Tap as part of the structure.
The Power Tap can attach to any compatible Cable or Conduit that accepts RF power.
Reactor Coolant Port
Coolant Ports allow fluids to be injected into and drained from the reactor. Reactors that provide RF directly use coolant ports to keep the core at a safe operating temperature. Those that run steam turbines use coolant ports to feed the turbine with steam.
Reactor Computer Port
The Computer Port intalled on a Reactor, allows ComputerCraft blocks and items to control it.
Reactor RedNet Port
Like the Computer Port, the RedNet Port allows a reactor to interface with a RedNet network.
Optimal Unattended Enderium Designs[edit]
Note: This guide was written before Ludicrite was added to the game. Ludicrite is now the best material.
For instance, a turbine spinning at a suboptimal 1781 RPM (using 32 blocks of Ludicrite) generates 28050 RF.
All optimal end game designs use 37 Enderium coil blocks (3 blocks short of 5 full rings) with a supply of 2,000mB/t of steam.
Note: only includes designs with a constant rotor speed.
Dimensions include turbine housing blocks. Height is the axis with the rotor shaft. Amount of Cyanite does not include that needed by fluid ports, controllers, power ports, etc. because that amount is independent of turbine dimensions.
Width | Height | Cyanite | Total Vol. | Empty Vol. | RPM | RF/t | RF/t/m³ | RF/t/cyan | Comment |
---|---|---|---|---|---|---|---|---|---|
5 | 27 | 547 | 675 | 83 | 1,797.4 | 24,077 | 35.67 | 44 | Highest energy per cubic metre. |
7 | 17 | 529 | 833 | 243 | 1,797.4 | 24,077 | 28.9 | 45.5 | Highest energy per cyanite ingot. |
13 | 11 | 739 | 1,859 | 963 | 1,797.4 | 24,077 | 12.95 | 32.5 | Highest energy per height. |
The first example above with the highest energy per cubic metre needs:
— 80 Turbine Rotor Blades
— 25 Turbine Rotor Shafts
— 37 Enderium Blocks
— 132 Turbine Housing
~ 312 Turbine Glass
— 1 each: Turbine Power Port, Turbine Controller, Turbine Rotor Bearing
— at least 2 Turbine Fluid Ports (1 input and 1 output)
(edit: properly adjusted requirements)
Using the most space efficient design, each turbine block consumes ~3 mB of steam and produces 35.67 RF per tick = ~12 RF/t/mB/m³. Mekanism 9 (available for Minecraft 1.7.10+) now produces even more power, and for a cheaper, faster, and smaller setup.
Turbine
A Turbine produces energy from Steam generated by an active cooling Reactor or generated using one of 6 other mods methods. Steam is converted back into water, which may be recycled into a Reactor to produce more steam.
Turbine Coil Material
The three values are always averaged together to give the resulting values for the entire turbine coil. A higher efficiency will always produce more power. A higher drag will produce more power, but will slow down the rotor more when induction is enabled. A higher bonus will also always produce more power.
Block | Efficiency | Drag | Bonus |
---|---|---|---|
Iron Iron | 0.33 | 0.1 | 1 |
Copper Copper | 0.396 | 0.12 | 1 |
Osmium Osmium | 0.462 | 0.12 | 1 |
Brass Brass | 0.462 | 0.12 | 1 |
Aluminum Aluminum | 0.495 | 0.13 | 1 |
Steel Steel | 0.495 | 0.13 | 1 |
Invar Invar | 0.495 | 0.14 | 1 |
Silver Silver | 0.561 | 0.15 | 1 |
Gold Gold | 0.66 | 0.175 | 1 |
Electrum Electrum | 0.825 | 0.2 | 1 |
Fluxed Electrum Fluxed Electrum | 0.825 | 0.22 | 1.01 |
Platinum Platinum | 0.99 | 0.25 | 1 |
Shiny Shiny | 0.99 | 0.25 | 1 |
Titanium Titanium | 1.023 | 0.27 | 1 |
Enderium Enderium | 0.99 | 0.3 | 1.02 |
Ludicrite Ludicrite | 1.155 | 0.35 | 1.02 |
Mithril Mithril | 0.726 | 0.15 | 1 |
Orichalcum Orichalcum | 0.759 | 0.17 | 1 |
Quicksilver Quicksilver | 0.858 | 0.18 | 1 |
Haderoth Haderoth | 0.99 | 0.2 | 1 |
Celenegil Celenegil | 1.089 | 0.225 | 1 |
Tartarite Tartarite | 0.99 | 0.25 | 1 |
Turbine Optimization
Optimized turbine designs for various coil materials
Turbines convert steam into water at an even ratio, and produce a certain amount of RF per tick depending on the coil material and turbine design.
Steam intake is always between 0 and 2,000 mB per tick.
The rotor speed gauge only shows between 0 and 2,200 RPM, but the actual rotor speed can be higher.
Generated energy is always positive or 0.
The width of the turbine frame is not a factor of energy output.
The number of rotor shafts isn’t a very large factor of energy output. Dimensions used are at the Player’s discretion.
If maximum rotor speed is unlimited and 2,000 mB per tick of steam is available, it is most efficient to use 80 rotor blades. If the rotor speed is limited to 2,000 RPM, perhaps more rotor shafts and fewer rotor blades would be preferable in order to keep the rotor speed above 1,796.27 but below 2,000 RPM while optimizing energy output.
All blocks of the coil do not need to be made of the same material, but are averaged together to determine the turbine’s score in each of the three coil traits. This makes it possible to make composite coils that use cheap filler metals in balance with high end metals to maximize limited resources. It also means, however, that adding a ring of a low performing metal to a turbine with several rings of a high-perfomance metal may actually reduce the output.
Turbine Equation
BladeSurfaceArea = Number of rotor blades in the turbine.
RotorMass = Total combined mass of the rotor blades and rotor shafts. See the table above for the mass of each block.
CoilSize = The number of coil blocks in the turbine.
InductorEfficiency, InductorDrag, InductorBonus = The average Efficiency, Drag, and Bonus of each coil block (from the table above).
RotorSpeed = The speed of the rotor as displayed in the turbine controller GUI.
Failed to parse (syntax error): {\displaystyle \text{TurbineEfficiency}= \begin{cases} 0.25 \left(\cos \left(\frac{\text{RotorSpeed}}{45.5 \pi }\right)+3\right) & \text{RotorSpeed}\geq 500 \\ 0.5 & \text{RotorSpeed}<500 \\ \end{cases} }
The turbine is at maximum efficiency (100%) at 898.134 RPM and 1796.27 RPM. It has an efficiency of 50% when less than 500 RPM, and at 1347.2 RPM. This doesn’t mean, however, that a turbine is most energy efficient at 1796 RPM.
Rotor energy in terms of ticks elapsed:
Where C is a constant that must be calculated based on initial values. If the turbine is just being started, then C is zero. OR, in terms of the RotorEnergy of the previous tick:
Rotor energy when turbine is running continuously:
a and b are both constant and are only dependent on the design of the turbine and the control values in the turbine controller.
If the turbine inductor is disengaged then InductionTorque equals zero.
User Interface/Graphics
- Add a temperature gauge block and other «display blocks» that can be plugged into reactor
- Add remote versions of above that read their inputs from RedNet
- Cool particle effects when the reactor is on! (requires making my own particle, bleah)
Multiblock Power Storage (0.8?)
- Molten salt/liquid metal batteries
- Build big banks of highly-vertical battery cells
- Must warm up (reduced storage efficiency on startup)
- Once warmed up, remains warm so long as there’s more power than a certain threshold inside
- Cools slowly if power within drops below threshold
Fuel Pre-Processing (0.9?)
- Provide better ways of pre-processing reactor fuel dusts directly into fuel fluids at an enhanced rate
- Create a «fear engine» that gives bonuses to power output/fuel generation when exposed to hostile mobs
Construction[edit]
Time lapse assembly of a small Reactor Structure.
Reactors and turbines are multi-block structures made up of individual blocks arranged according to specific rules, which together create a large functional machine. Both reactors and turbines must be built as a closed, mostly hollow box with no holes and complete edges, including corners. The edges of this box can be, but not necessarily built from Reactor Casing or Turbine Housing blocks, and the faces of Reactor Glass or Turbine Glass blocks, respectively.
In addition to these containment blocks, a number of other blocks are necessary to make a functioning reactor or turbine. None of these blocks can be placed on the edge or corner; they must be somewhere in the faces of the reactor, sometimes in very specific places. Right clicking on the reactor casing or turbine housing will display a message of what is missing.
Important: Ensure that there aren’t any metallic blocks within a 1 block radius of the turbine! Doing so results in unpredictable behavior with the turbine.
BigReactors.cfg
GenerateYelloriteOre=true – включить генерацию Yellorite в мире. Рекомендуется отключить, если в клиенте установлен IC2 во избежание дисбаланса в игре, т.к. при обжигании руды игрок сразу получит обогащенный уран. Автозамена Yellorite Ingot на слитки урана отключается параметром autoAddUranium=false, но большой разницы я не вижу: фактически, будет один вид «халявного» топлива, и один не очень… Для «честной» игры с IC2 лучше руду не включать и использовать уран.
Запасы Yellorium Ore в мире так же настраиваются: количество кластеров, их размер, амплитуда высот.
enableWorldGen=true — генерация руды Yellorite включена для всех биомов, кроме Нижнего мира и Края.
enableWorldRegeneration=false – генерация руды в уже созданном чанке. По-умолчанию отключена.
Для тех, кому кажется, что количество вырабатываемой энергии в аддоне слишком завышено, существует коэффициент в параметре powerProductionMultiplier – множитель мощности реакторов. Другой вариант — указать максимальные размеры каркаса: maxReactorHeight (высота) и maxReactorSize (длина и ширина), тем самым ограничив энергетические мощности машин.
Аддон появился совсем недавно, еще даже не вышел со стадии альфа-тестирования, тем не менее, он заслуживает внимания. Это то, чего так долго не хватало BuildCraft’у! Возможно, Big Reactors еще пока не сбалансирован, забагован и сырой, но в будущем автор обещает его намного усложнить и разнообразить.
На этом все. С вами был therapy session, wiki, google-translate, paint.net, ms word, немного энтузиазма и замечательное творение от Erogenous Beef — Big Reactors. Удачи в начинаниях и развитии!
Как все происходит на деле?
Размер рамки реактора составляет от 3х3х3 до 32х32х48 (согласно файлу конфигурации). От размера реактора напрямую зависит его мощность. Но для чего строить огромную махину, если энергию потом будет некуда девать? Начнем с маленького 3х3х3.
Нижний слой выкладываем из обшивки. В центре можно воткнуть стеклянный блок, если угодно.
Средний слой состоит из главного контроллера, порта IN-OUT, «крана», стеклянного блока обшивки. В центре стоит прозрачный топливный стержень. Также, мы помним, что ребра должны состоять только из обшивки.
Последний слой полностью из обшивки, в центре стоит Reactor Control Rod прямо над топливным стержнем. Если конструкция собрана правильно – мы визуально это заметим, как на рисунке.
Какова будет мощность реактора? Один топливный стержень способен максимально вырабатывать ~4MJ\t. Если построить реактор 3х3х12, то стержней будет 10 (12 общая высота и минус 2 блока: низ обшивки и верх Control Rod) эквивалентом ~40MJ\t. Круто? Еще бы! Теоретически, при максимальном размере реактора производится энергия 165 600 MJ\t! *GregTech курит в сторонке*
Выводить энергию лучше всего с помощью труб из Thermal Expansion, особенно, если мощности нужны очень высокие. Если использовать трубы из BuildCraft, то сперва придется подключать деревянную электрическую, как и к любому двигателю, максимальная пропускная способность которой равна 32MJ\t.
Взрывается ли реактор, если накопит максимальное количество энергии и которую некому будет отдавать? Лично мне пока не удалось разогреть его до таких критических температур. Отмечу только, что в конце реактор сбавляет мощность, но продолжает работать. Автоматических систем его отключения, к сожалению, пока не предусмотрено. Гейты BuildCraft никак не реагируют на Big Reactors, кроме IN-OUT портов.
Building It[]
Reactors and turbines are multi-block structures: they are made up of individual blocks arranged according to specific rules which together create a large functional machine. Both reactors and turbines must be built as a closed, mostly hollow box with no holes and complete edges, including corners. The edges of this box must be Reactor Casing or Turbine Housing, and the faces Reactor Glass or Turbine Glass, respectively.
In addition to these containment blocks, a number of other blocks are necessary to make a functioning reactor or turbine. None of the these blocks can be placed on the edge or corner; they must be somewhere in the faces of the reactor, sometimes in very specific places. Right clicking on the reactor casing or turbine housing will tell you if anything is missing.
Important: Ensure there are no metallic blocks within a 1 block radius of your turbine! Doing so results in unpredictable behavior with the turbine.
Download this spreadsheet to calculate the required materials and their cost for any size Reactor structure.
Use this Big Reactor Simulator to test the efficiency of different Reactor design.
GUI[edit]
Passive Cooling Modeedit
1
2
3
4
5
6
7
8
9
10
In this mode the reactor will produce Redstone Flux energy that can be interfaced with a Reactor Power Tap.
- Core Temperature:
Temparature needs to be high enough to be efficient, too high increases fuel usage. The efficiency of heat transferred to the casing is dependant on the interior design of the reactor.
- Energy Output: Energy output in Redstone Flux per tick. When the energy produced is over 1,000 RF/t it switches to Kilo RF/t, so 1.20 KiRF/t is 1,200 RF/t.
- Fuel Burnup Rate: How quickly fuel is turned into waste, measured in mB/t. One ingot of Yellorium or Blutonium is the same as 1000mB of fuel.
- Fuel Reactivity: This is determined by the design of the fuel rod environment. The higher the percentage the more efficient the reactor is at converting fuel to energy.
- Core Fuel Status: Shows the ratio of fuel to waste in the core, yellow is fuel, cyan is waste. Hovering over this will show precise numbers for fuel, waste and number of fuel rods in the reactor.
- Casing Heat: Heat of the reactor’s casing. High heat increases energy output and coolant to steam conversion.
- Core Heat: Same as Core Temperature.
- Energy Buffer: The reactor has an internal energy storage of 10 million RF. Excess energy generated once the buffer is full will simply be wasted, and the reactor will eventually auto-shutdown after a while to save on fuel.
- Waste Options: With these three buttons you can decide what to do with the waste Cyanite generated. The three options are:
- Auto-Eject Waste: Waste will be sent automatically to Reactor Access Ports. If a pipe is connected to the port it will eject into the pipe.
- Do Not Auto-Eject Waste: Waste will build up in the rods until ejected manually by the player or by Redstone or computer signals.
- Eject Waste Now: Used to manually eject waste into the Reactor Access Ports, when more than 1,000mB of waste has accumulated .
- Activate / Deactivate: the Arrow button will activate the reactor, the No Entry Sign button will power off the reactor.
Active Cooling Modeedit
1
2
3
4
5
6
7
8
9
10
11
12
In this mode the reactor will produce super heated fluid (Steam) from coolant (Water) instead of energy. This can be used to run a Big Reactors Turbine (or other steam powered things from other mods) to produce energy. Hot fluid and coolant are both inserted and extracted using a Reactor Coolant Port. Adding at least one of these to a reactor will turn it into an active cooling reactor.
- Core Temperature:
Temparature needs to be high enough to be efficient, too high increases fuel usage. The efficiency of heat transferred to the casing is dependant on the interior design of the reactor.
- Hot Fluid Output: Displays the amount of superheated fluid (Steam only at the moment) being produced at the moment in milliBuckets per tick (mB/t).
- Fuel Burnup Rate: How quickly fuel is turned into waste, measured in mB/t. One ingot of Yellorium or Blutonium is the same as 1000mB of fuel.
- Fuel Reactivity: This is determined by the design of the fuel rod environment. The higher the percentage the more efficient the reactor is at converting fuel to energy.
- Core Fuel Status: Shows the ratio of fuel to waste in the core, yellow is fuel, cyan is waste. Hovering over this will show precise numbers for fuel, waste and number of fuel rods in the reactor.
- Casing Heat: Heat of the reactor’s casing. High heat increases energy output and coolant to steam conversion.
- Core Heat: Same as Core Temperature.
- Power Buffer: How much power the reactor currently holds, in both units of RF and percentage of capacity. Not used in active cooling mode.
- Waste Options: With these three buttons you can decide what to do with the waste Cyanite generated. The three options are:
- Auto-Eject Waste: Waste will be sent automatically to Reactor Access Ports. If a pipe is connected to the port it will eject into the pipe.
- Do Not Auto-Eject Waste: Waste will build up in the rods until ejected manually by the player or by Redstone or computer signals.
- Eject Waste Now: Used to manually eject waste into the Reactor Access Ports, when more than 1,000mB of waste has accumulated .
- Activate / Deactivate: the Arrow button will activate the reactor, the No Entry Sign button will power off the reactor.
- Coolant Fluid Tank: Amount of coolant in the reactors coolant buffer tank.
- Hot Fluid Tank: Hot fluid will go here first as a buffer and must be pumped out of the reactor using a Reactor Coolant Port.
Note[edit]
- It is important to note that the coolant discussed in this section is completely unrelated to the Reactor Coolant Port. These would be more accurately described as the moderating material of the reactor, whereas the coolant port accepts only water for the generation of steam.
- Fantasy Metals: Mithril, Orichalcum, Quicksilver, Haderoth, Celenegil, Tartarite and Manyullyn may also be used as coolant material.
- ↑ Some of the materials above don’t work in the Big Reactor on MC 1.6.4
- As of v0.3.4A2, any material will have a mass of 10 units per block. In the future the mod developer plans to allow the rotor to be constructed out of different materials.
- ↑ These six materials only work if the use of fantasy metals is enabled in the Big Reactor config file.
TODO — 0.5: The Exotic Coolant Update
Internals
- Coolant fluid pairs can be registered in a registry, allowing different types of fluids to be used as coolants
- Rebalance reactor interior list so it’s not just a race to enderium
- Make blocks mostly good at either generating energy OR moderating radiation, not both
- Moderators improve as they become more transparent to slow radiation
- Generators improve as they become less transparent to slow radiation
Multiblock Turbine
- Optional explosion during severe overspeed conditions
- Redstone port.
- Different types of rotors and blades, made of different metals
- Additional very-high-end coil parts that extract Gratuitous Amounts of Energy
Heat Exchanger
- Big multiblock machine which converts exotic coolants into steam
- Absorbs heat from exotic coolants into heat buffer, transfers buffered heat to water tank to create steam
- Has «special steam» modes which create compressed steam (x10 energy), ultradense steam (x100 energy) and steamium (x1000 energy)
- Primary fluid inlet accepts all mapped fluid pairs from coolant registry
Multiblock Reactor
- Coolant manifolds inside reactor add extra surface area — must be adjacent to casing, other manifold or fuel rod
- Coolant inlet accepts all mapped fluid pairs from coolant registry
- Add reactivity penalty to control rods, so a reactor with high control rod insertion is less efficient than a smaller reactor with lower insertion. Encourages right-sizing designs.
Construction
File:Simple Big Reactor Animation.gif
Time lapse assembly of a small Reactor Structure.
Reactors and turbines are multi-block structures made up of individual blocks arranged according to specific rules, which together create a large functional machine. Both reactors and turbines must be built as a closed, mostly hollow box with no holes and complete edges, including corners. The edges of this box must be built from Reactor Casing or Turbine Housing blocks, and the faces of Reactor Glass or Turbine Glass blocks, respectively.
In addition to these containment blocks, a number of other blocks are necessary to make a functioning reactor or turbine. None of these blocks can be placed on the edge or corner; they must be somewhere in the faces of the reactor, sometimes in very specific places. Right clicking on the reactor casing or turbine housing will display a message of what is missing.
Important: Ensure that there aren’t any metallic blocks within a 1 block radius of the turbine! Doing so results in unpredictable behavior with the turbine.
Download this spreadsheet to calculate the required materials and their cost for any size Reactor structure.
Use this Big Reactor Simulator to test the efficiency of different Reactor designs.
Turbine[edit]
A Turbine produces energy from Steam generated by an active cooling Reactor or generated using one of 6 other mods methods. Steam is converted back into water, which may be recycled into a Reactor to produce more steam.
Turbine Coil Materialedit
The three values are always averaged together to give the resulting values for the entire turbine coil. A higher efficiency will always produce more power. A higher drag will produce more power, but will slow down the rotor more when induction is enabled. A higher bonus will also always produce more power.
Block | Efficiency | Drag | Bonus |
---|---|---|---|
Iron | 0.33 | 0.1 | 1 |
Copper | 0.396 | 0.12 | 1 |
Osmium | 0.462 | 0.12 | 1 |
Brass | 0.462 | 0.12 | 1 |
Aluminum | 0.495 | 0.13 | 1 |
Steel | 0.495 | 0.13 | 1 |
Invar | 0.495 | 0.14 | 1 |
Silver | 0.561 | 0.15 | 1 |
Gold | 0.66 | 0.175 | 1 |
Electrum | 0.825 | 0.2 | 1 |
Fluxed Electrum Fluxed Electrum | 0.825 | 0.22 | 1.01 |
Platinum | 0.99 | 0.25 | 1 |
Shiny Shiny | 0.99 | 0.25 | 1 |
Titanium | 1.023 | 0.27 | 1 |
Enderium Enderium | 0.99 | 0.3 | 1.02 |
Ludicrite Ludicrite | 1.155 | 0.35 | 1.02 |
Mithril | 0.726 | 0.15 | 1 |
Orichalcum Orichalcum | 0.759 | 0.17 | 1 |
Quicksilver | 0.858 | 0.18 | 1 |
Haderoth Haderoth | 0.99 | 0.2 | 1 |
Celenegil Celenegil | 1.089 | 0.225 | 1 |
Tartarite Tartarite | 0.99 | 0.25 | 1 |
Turbine Optimizationedit
- Turbines convert steam into water at an even ratio, and produce a certain amount of RF per tick depending on the coil material and turbine design.
- Steam intake is always between 0 and 2,000 mB per tick.
- The rotor speed gauge only shows between 0 and 2,200 RPM, but the actual rotor speed can be higher.
- Generated energy is always positive or 0.
- The width of the turbine frame is not a factor of energy output.
- The number of rotor shafts isn’t a very large factor of energy output. Dimensions used are at the Player’s discretion.
- If maximum rotor speed is unlimited and 2,000 mB per tick of steam is available, it is most efficient to use 80 rotor blades. If the rotor speed is limited to 2,000 RPM, perhaps more rotor shafts and fewer rotor blades would be preferable in order to keep the rotor speed above 1,796.27 but below 2,000 RPM while optimizing energy output.
- All blocks of the coil do not need to be made of the same material, but are averaged together to determine the turbine’s score in each of the three coil traits. This makes it possible to make composite coils that use cheap filler metals in balance with high end metals to maximize limited resources. It also means, however, that adding a ring of a low performing metal to a turbine with several rings of a high-perfomance metal may actually reduce the output.
Turbine Equationedit
- BladeSurfaceArea = Number of rotor blades in the turbine.
- RotorMass = Total combined mass of the rotor blades and rotor shafts. See the table above for the mass of each block.
- CoilSize = The number of coil blocks in the turbine.
- InductorEfficiency, InductorDrag, InductorBonus = The average Efficiency, Drag, and Bonus of each coil block (from the table above).
- RotorSpeed = The speed of the rotor as displayed in the turbine controller GUI.
The turbine is at maximum efficiency (100%) at 898.134 RPM and 1796.27 RPM. It has an efficiency of 50% when less than 500 RPM, and at 1347.2 RPM. This doesn’t mean, however, that a turbine is most energy efficient at 1796 RPM.
Rotor energy in terms of ticks elapsed:
Where C is a constant that must be calculated based on initial values. If the turbine is just being started, then C is zero. OR, in terms of the RotorEnergy of the previous tick:
Rotor energy when turbine is running continuously:
a and b are both constant and are only dependent on the design of the turbine and the control values in the turbine controller.
If the turbine inductor is disengaged then InductionTorque equals zero.
Turbine[edit]
A Turbine produces energy from Steam generated by an active cooling Reactor or generated using one of 6 other mods methods. Steam is converted back into water, which may be recycled into a Reactor to produce more steam.
Turbine Coil Materialedit
The three values are always averaged together to give the resulting values for the entire turbine coil. A higher efficiency will always produce more power. A higher drag will produce more power, but will slow down the rotor more when induction is enabled. A higher bonus will also always produce more power.
Block | Efficiency | Drag | Bonus |
---|---|---|---|
Iron | 0.33 | 0.1 | 1 |
Copper | 0.396 | 0.12 | 1 |
Osmium | 0.462 | 0.12 | 1 |
Brass | 0.462 | 0.12 | 1 |
Aluminum | 0.495 | 0.13 | 1 |
Steel | 0.495 | 0.13 | 1 |
Invar | 0.495 | 0.14 | 1 |
Silver | 0.561 | 0.15 | 1 |
Gold | 0.66 | 0.175 | 1 |
Electrum | 0.825 | 0.2 | 1 |
Fluxed Electrum Fluxed Electrum | 0.825 | 0.22 | 1.01 |
Platinum | 0.99 | 0.25 | 1 |
Shiny Shiny | 0.99 | 0.25 | 1 |
Titanium | 1.023 | 0.27 | 1 |
Enderium Enderium | 0.99 | 0.3 | 1.02 |
Ludicrite Ludicrite | 1.155 | 0.35 | 1.02 |
Mithril | 0.726 | 0.15 | 1 |
Orichalcum Orichalcum | 0.759 | 0.17 | 1 |
Quicksilver | 0.858 | 0.18 | 1 |
Haderoth Haderoth | 0.99 | 0.2 | 1 |
Celenegil Celenegil | 1.089 | 0.225 | 1 |
Tartarite Tartarite | 0.99 | 0.25 | 1 |
Turbine Optimizationedit
- Turbines convert steam into water at an even ratio, and produce a certain amount of RF per tick depending on the coil material and turbine design.
- Steam intake is always between 0 and 2,000 mB per tick.
- The rotor speed gauge only shows between 0 and 2,200 RPM, but the actual rotor speed can be higher.
- Generated energy is always positive or 0.
- The width of the turbine frame is not a factor of energy output.
- The number of rotor shafts isn’t a very large factor of energy output. Dimensions used are at the Player’s discretion.
- If maximum rotor speed is unlimited and 2,000 mB per tick of steam is available, it is most efficient to use 80 rotor blades. If the rotor speed is limited to 2,000 RPM, perhaps more rotor shafts and fewer rotor blades would be preferable in order to keep the rotor speed above 1,796.27 but below 2,000 RPM while optimizing energy output.
- All blocks of the coil do not need to be made of the same material, but are averaged together to determine the turbine’s score in each of the three coil traits. This makes it possible to make composite coils that use cheap filler metals in balance with high end metals to maximize limited resources. It also means, however, that adding a ring of a low performing metal to a turbine with several rings of a high-perfomance metal may actually reduce the output.
Turbine Equationedit
- BladeSurfaceArea = Number of rotor blades in the turbine.
- RotorMass = Total combined mass of the rotor blades and rotor shafts. See the table above for the mass of each block.
- CoilSize = The number of coil blocks in the turbine.
- InductorEfficiency, InductorDrag, InductorBonus = The average Efficiency, Drag, and Bonus of each coil block (from the table above).
- RotorSpeed = The speed of the rotor as displayed in the turbine controller GUI.
The turbine is at maximum efficiency (100%) at 898.134 RPM and 1796.27 RPM. It has an efficiency of 50% when less than 500 RPM, and at 1347.2 RPM. This doesn’t mean, however, that a turbine is most energy efficient at 1796 RPM.
Rotor energy in terms of ticks elapsed:
Where C is a constant that must be calculated based on initial values. If the turbine is just being started, then C is zero. OR, in terms of the RotorEnergy of the previous tick:
Rotor energy when turbine is running continuously:
a and b are both constant and are only dependent on the design of the turbine and the control values in the turbine controller.
If the turbine inductor is disengaged then InductionTorque equals zero.
Note[edit]
- It is important to note that the coolant discussed in this section is completely unrelated to the Reactor Coolant Port. These would be more accurately described as the moderating material of the reactor, whereas the coolant port accepts only water for the generation of steam.
- Fantasy Metals: Mithril, Orichalcum, Quicksilver, Haderoth, Celenegil, Tartarite and Manyullyn may also be used as coolant material.
- ↑ Some of the materials above don’t work in the Big Reactor on MC 1.6.4
- As of v0.3.4A2, any material will have a mass of 10 units per block. In the future the mod developer plans to allow the rotor to be constructed out of different materials.
- ↑ These six materials only work if the use of fantasy metals is enabled in the Big Reactor config file.